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Abstract In this paper, the embedded discontinuity

approach is applied in finite element modeling of rock in

compression and tension. For this end, a rate-dependent

constitutive model based on (strong) embedded displace-

ment discontinuity model is developed to describe the

mode I, mode II and mixed mode fracture of rock. The

constitutive model describes the bulk material as linear

elastic until reaching the elastic limit. Beyond the elastic

limit, the rate-dependent exponential softening law governs

the evolution of the displacement jump. Rock heteroge-

neity is incorporated in the present approach by random

description of the mineral texture of rock. Moreover, initial

microcrack population always present in natural rocks is

accounted for as randomly-oriented embedded discontinu-

ities. In the numerical examples, the model properties are

extensively studied in uniaxial compression. The effect of

loading rate and confining pressure is also tested in the 2D

(plane strain) numerical simulations. These simulations

demonstrate that the model captures the salient features of

rock in confined compression and uniaxial tension. The

developed method has the computational efficiency of

continuum plasticity models. However, it also has the

advantage, over these models, of accounting for the ori-

entation of introduced microcracks. This feature is crucial

with respect to the fracture behavior of rock in compression

as shown in this paper.

Keywords Uniaxial compression � Rock fracture �
Embedded discontinuities � Confined compression � Finite
elements

1 Introduction

Numerical modeling of rock fracture has become an active

area of research in the field of computational mechanics

due to its importance in failure analyses of underground

rock structures and rock breakage industry. The major

challenges in this field are, generally, related to numerical

modeling of crack propagation and, particularly, to

description of rock microstructure. The two primary factors

affecting the mechanical behavior of rock are its hetero-

geneity, due to different minerals with different material

properties and various grain sizes and shapes, and inherent

microdefects, such as microcracks, pores and inclusions

(Jaeger and Cook 1971; Mahabadi 2012; Liu et al. 2004a;

Tang 1997; Xia et al. 2008; Wei and Anand 2008; Kra-

jcinovic 1996; Tang and Hudson 2010). Therefore, it is

beneficial if both of these factors are taken into account in

numerical modeling aiming at realistic description of rock

fracture.

In addition to these microstructural factors, the external

loading and its rate also affect the microscopic processes of

fracture and, consequently, the corresponding macroscopic

failure mode. The effect of confinement or lateral pressure

in compression of cylindrical rock specimen is roughly as

follows (Wei and Anand 2008; Krajcinovic 1996): (1) In

the low-confinement regime, grain-boundary sliding and

inherent microcrack population-induced crack initiation,

growth and coalescence will result in large inelastic

deformation, macroscopic dilatancy and brittle faulting

with axial splitting failure mode with single or multiple
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axial macrocracks (Paterson 1958; Jia et al. 2013). It is

observed many times, also in uniaxial compression, that the

axially-oriented microfaults (e.g. mode I microcracks) link

together to form a slanted macrofault (shear band)

(Szwedzicki 2007). (2) At intermediate confining pressure,

grain boundary microcracking becomes more distributed

and, during strain-softening stage, localizes to form mac-

roscopic shear bands. (3) On still increasing confinement,

the grain boundary sliding is suppressed by friction leading

to disappearance of dilatancy effects and onset of grain

interior plasticity to accommodate the restricted external

deformation. This brittle-to-ductile transition is exhibited

at room temperatures and pressures accessible in the lab-

oratory by compact carbonate rocks (e.g. marble and

limestone). With these rocks, the shear stresses required to

grain interior plasticity activation is relatively low (Wei

and Anand 2008).

The influence of rock microstructure on the deformation

and failure processes in uniaxial compression was studied

by Pininska (2008) on the basis of experiments on several

hundreds of Polish rocks. It was found that the main

destabilizing factor for rocks with regular-grained and

compact structure bonded with strong cement is the brittle

intragranular fracture of single grains. Consequently,

extensive microcracks appear inside grains without dilat-

ancy. The related failure mechanism is a burst-like loss of

stability of the rock structure resulting in multiple frag-

mentation of the sample. In carbonate rocks with grains

randomly distributed in a weak matrix and rocks containing

soft irregularly shaped grains, intergranular microcracks

leading to failure of the sample initiate by structural

(micro) defects. In the related post-critical stage of the

failure process, macrocracking is shear fracture-dominated.

These findings are relevant in the present numerical study.

The effect of loading rate is that increased loading rate

increases the peak stress and leads to multiple fragmenta-

tion of rock samples (Zhang and Zhao 2014).

Many numerical approaches have been developed dur-

ing the last two and half decades for simulating the rock

fracture in uniaxial and confined compression. Tang (1997)

introduced his rock failure process analysis (RFPA) code

where the rock fracture is modeled with a simple isotropic

damage model and rock heterogeneity is described at the

mesoscopic level using the Weibull distribution. Liu et al.

(2004a) modified the code (resulting in R-T2D code) with a

double-elliptic fracture criterion. Saksala developed (2010)

a damage-viscoplastic consistency model with parabolic

cap for rocks with brittle and ductile behavior under low-

velocity impact loading. Fang and Harrison (2002a)

developed a local degradation model for brittle fracture in

heterogeneous rocks. They applied the model, as imple-

mented in the fast Lagrangian analysis of continua (FLAC)

code, for modeling confined compression Fang and

Harrison (2002b). In the model for geomaterials under

tension and compression, by Klerck et al. (2004), a discrete

crack is introduced (and followed by remeshing) in the

mesh when a tensile strength is exhausted in the principal

direction. Combined finite element method/discrete ele-

ment method (FEM/DEM) approach by Mahabadi et al.

(2010) and (2012) seems very promising for fragmentation

analyses. The model describes the microstructure of rock

through the image analysis and mineral mapping method.

In the numerical study on brittle-to-ductile transition by

Wei and Anand (2008), the rock microstructure is repre-

sented as Voronoi-tessellated grains. The grain-interior

failure is accounted for by standard plasticity model while

the grain-boundary cracking is modeled by a cohesive law

for shear and tension. Sellers and Napier (1997) developed

a boundary element code for modeling fracture formation

in deep gold mine excavations. Particle-based models are

applied also by Yoon et al. (2012), Ma et al. (2011) and Jia

et al. (2013). Finally, the cellular automata-based 3D

numerical study by Pan et al. (2009) is recognized.

In the present work, the embedded discontinuity

approach is applied in numerical modeling of rock under

tension and compression. For this end, a rate-dependent

embedded displacement discontinuity model with constant

displacement jumps both in normal and tangential direc-

tions is developed to describe the mode I, mode II and

mixed mode fracture of rock. The rate dependency is

incorporated via viscosity. The works by Simo et al.

(1993), Simo and Oliver (1994) and Oliver (1996a, b) are

referred here to as the early developments of the method.

This approach is particularly suitable for the description of

inherent microcrack populations present in natural rocks.

The microstructure of rock is incorporated into the model

by random description of the mineral texture of rock. This

model is applied in 2D simulation confined compression

test. The model properties are extensively studied in uni-

axial compression. The effect of confinement and loading

rate are tested as well.

2 Theory of the Model

The theory of the model for rock fracture based on the

embedded strong discontinuity approach is presented in

this section. Moreover, the methods for heterogeneity and

initial crack population description are briefly explained.

2.1 Strong Discontinuity Kinematics

Consider a body occupying domain X in R2 with a

boundary qX (see Fig. 1). The body is split into two dis-

joint parts X? and X- by a strong discontinuity line Cd

(crack) defined by its normal n and tangent m. Then the
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displacement field of a particle in the body can be

decomposed as a function of the location x [ X as

uðxÞ ¼ uðxÞ þ HCd
ðxÞ � /ðxÞð Þ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

MCd ðxÞ

uðxÞ ð1Þ

where �uðxÞ stands for the regular displacement field, uðxÞ
is the displacement jump at Cd due to discontinuity, and

HCd
ðxÞ is the Heaviside function at the discontinuity.

Function /ðxÞ is defined in an arbitrary subdomain X/ ¼
Xþ

/ [ X�
/ so that /ðxÞ ¼ 0 when x 2 X�nX�

/ , /ðxÞ ¼ 1

when x 2 XþnXþ
/ , and it is C0-continous between 0 and 1

when x 2 X/. Decomposition (1) is used, instead the nat-

ural one with /ðxÞ � 0, since it facilitates an easier treat-

ment of the essential boundary conditions in the finite

element (FE) context. More specifically, as both �u and u

may be nonzero at boundary qX, it is more convenient to

use decomposition (1) since u restricts the effect of the

displacement jump to subdomain X/.

Infinitesimal deformation kinematics assumption leads

to the following strain field (Feist and Hofstetter 2006)

eðxÞ ¼ rs �uðxÞ � ðu�r/ðxÞÞsym
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�e

þ dCd
ðxÞðu� nÞsym

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ed

ð2Þ

where the resultrHCd
¼ dCd

n on Dirac delta function dC is

used. Moreover, constant displacement jump is assumed

yielding rsu ¼ 0. The first two terms on the right hand

side of (2) defined in the bulk, i.e. in XnCd, comprise the

regular strain �eðxÞ while the third term is singular strain

eddðxÞ defined in the discontinuity.

2.2 Finite Element Implementation of Strong

Discontinuity Kinematics

Consider the body described in Fig. 1 being discretized

with the constant strain triangle (CST) elements. With this

choice the embedded discontinuity is a straight line. The

finite element implementation is illustrated in Fig. 2.

The finite element discretized version of Eqs. (1) and (2)

are

uðxÞ ¼ Niu
e
i þ HCd

ðxÞ � NsolðxÞ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Me
Cd

ad

eðxÞ ¼ ðrNi � uei Þ
sym � ðrNsolðxÞ � adÞsym þ dCd

ðn� adÞsym

ð3Þ

where ad denotes the displacement jump and Ni and uei are

the standard (linear with CST) interpolation functions and

nodal displacements (i = 1,2,3 with summation on repe-

ated indices), respectively. Thus, in the finite element

context function u in Eq. (1) is identified with the inter-

polation function Nsol related to the solitary node, ssol, with

a single element support.

Applying the standard arguments to the discrete form of

the balance of linear momentum, the following symmetric,

kinematically consistent FE formulation can be derived

(Huespe et al. 2006; Huespe and Oliver 2011):
Z

Xe

qNiNj €uj dXþ
Z

Xe

r � rNidX�
Z

Cr

Nit̂dC ¼ 0;

i; j ¼ 1. . .Nnodes

�
Z

Xe

r � rNsoldXe þ
Z

Cd

tCd
dCd ¼ 0; 8e 2 J ð4Þ

where Nnodes is the number of nodes in the mesh, J denotes

the set of elements with an embedded discontinuity, and Ni

is the interpolation function of node i. The second equation

which imposes a weak equilibrium across the discontinuity

Cd, can be further simplified in case of CST element with

constant displacement jump (yielding constant traction).

This simplification, is written here with the local (strong)

form of equilibrium as

tCd
¼ Xe

ld
r � rNsol

tCd
¼ r � n

ð5Þ

where ld is the length of the discontinuity. Therefore, this

kinematically-consistent variational formulation requires

that the length (area in 3D) of the discontinuity must be

known a priori (Sancho et al. 2007). Tracking algorithms

are usually employed for determining the length and

position of the discontinuity. Inconveniently, this requires

an extra problem, such as steady-state heat conduction, to

be solved (Huespe and Oliver 2011).

There exists, however, another non-symmetric FE for-

mulation, originally presented by Simo et al. (1993), Simo

and Oliver (1994), based on the enhanced assumed strains

(EAS) where the enhanced modes are constructed in the

strain space, orthogonal to the stress field. There is still a

third approach chosen in this paper which is a hybrid

exploiting the advantages of both formulations, i.e. the

Fig. 1 Domain crossed by a discontinuity line
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kinematic field is enhanced according to Eq. (3), while the

EAS approach is used in calculating the internal forces and

imposing the traction continuity. This formulation is

obtained by replacing (4)2 with the following average

values:

1

Xe

Z

XenCd

r � ndX ¼ 1

ld

Z

Cd

rCd
� n

zfflfflffl}|fflfflffl{

tCd

dCd ¼ 0 ð6Þ

The integrands in (6) are constants for the CST element

(and linear tetrahedron in 3D) and, thus, (6) becomes the

local (exact) equilibrium condition (5)2 for the tractions

across the discontinuity. It should be emphasized that the

EAS concept-based formulation provides a very simple

implementation as neither the explicit position of the dis-

continuity line within the element nor the length of it are

necessary to be known. Only the relative position of the

discontinuity with respect to the element nodes is required

for the calculation of function Nsol related to the solitary

node (Sancho et al. 2007). For these reasons, the EAS-

based approach is chosen here for the following

developments.

The selection of the solitary node ssol is based on the

idea of Sancho et al. (2007). Thereby, the solitary node is

chosen so that n and rNsol are as parallel as possible. This

is achieved by following criterion:

rNsol ¼ arg max
i¼1;2;3

jrNi � nj
jjrNijj

� �

ð7Þ

It is worth mentioning that all three forms are equal with

CST elements (and linear tetrahedra in 3D) if the dis-

placement discontinuity line is parallel to one of the sides

of the triangle and the discontinuity line is located at the

mid height of the element (see Fig. 2c) (Sancho et al.

2007). In this case

n ¼ rNsol

jjrNsoljj ¼
nþ

h
ð8Þ

and ldh = Xe with the terminology in Fig. 2c being used.

This reorientation of the crack normal is tested in the

numerical simulations in addition to the usual assumption

that the crack is perpendicular to the major principal

direction n.

2.3 Rate-Dependent Discontinuity Model

and Determination of the Displacement Jump

A bi-surface discontinuity model accounting for mode I

and II fracture modes is sketched here for solving the

displacement jump. Due to the formal similarity between

the embedded discontinuity theory and classical plasticity,

the present model can be cast in the form of the visco-

plastic consistency model by Wang et al. (1997). The

model employs following loading functions:

utðtCd
; j; _jÞ ¼ n � tCd

|fflffl{zfflffl}

r:ðn�nÞ

�ðrt þ qðj; _jÞÞ

usðtCd
; j; _jÞ ¼ m � tCd

j j
|fflfflfflffl{zfflfflfflffl}

jr:ðm�nÞj

�ðrs þ rs
rt
qðj; _jÞÞ

ð9Þ

where n andm are the unit normal and tangent vectors for the

crack surface, r is the bulk stress while rt and rs denote the
elastic limits in tension and shear, respectively. Furthermore,

j; _j are the internal variable and its rate is related to the

softening law for discontinuity. Fixed crack concept is

adopted here, i.e. n remains the same after introducing a

discontinuity in an element. Therefore, it is necessary to allow

for relative tangential sliding to prevent locking by unlimited

shear stress generation in non-proportional loading states.

Following exponential softening law is assumed for

softening variable q:

q ¼ hjþ s _j

h ¼ � r2t
GIc

expð� rt
GIc

jÞ
ð10Þ

where GIc is the mode I fracture energy and s is the con-

stant viscosity modulus. This model couples the two frac-

ture modes consistently, since the corresponding elasticity

limits are chosen so that the full stress reduction is

achieved simultaneously.

Fig. 2 CST element with a discontinuity line (a), function MCd
(b) and geometrical definitions (c)
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Evolution laws, similar to those in classical plasticity,

are written for the displacement jump at the discontinuity

and the internal variable as (Brancherie and Ibrahimbego-

vic 2009)

_ad ¼ _aI þ _aII ¼ _kt
out

otCd

þ _ks
ous

otCd

¼ _ktnþ _ksm � sgn(tCd
�mÞ

_j ¼ _kt
out

oq
þ _ks

ous

oq
ð11Þ

where _kt; _ks are the crack opening and sliding increments.

The model is completed by the loading/unloading condi-

tions of Kuhn-Tucker form:

_ki � 0; ui � 0; _kiui ¼ 0; i ¼ t,s ð12Þ

The displacement jump, ad, and the traction at the dis-

continuity, tCd
, fulfilling the Kuhn-Tucker conditions (12)

are solved using the standard method of computational

multi-surface viscoplasticity. Finally, the stress of an ele-

ment with a discontinuity is computed as

r ¼ E : ðetot � ðrNsol � adÞsymÞ ð13Þ

This relation, where etot is the regular strain is, derived

from (6) by (3). Then the traction vector for an element is

given by tCd
¼ r � n.

2.4 Criteria for the Introduction of an Embedded

Discontinuity and its Orientation

The Mohr–Coulomb (MC) and Rankine failure criteria are

employed for indicating the introduction of new embedded

discontinuities in the elements representing the intact rock

material. These criteria are chosen due to their simplicity of

implementation (both are linear in stresses and together

they involve only three material parameters). Yet, they can

predict the tensile and compressive failure (at low con-

finement levels) of many rocks with a reasonable accuracy

(Goodman 1989; Jaeger and Cook 1971). In terms of

principal stresses, these criteria are

fR ¼ r1 � rt

fMC ¼ 1þ sin/
1� sin/

r1 � r3 � rc
ð14Þ

where rc is the uniaxial compressive strength and u is the

internal friction angle of rock material. The scheme for

selecting the orientation of crack normal n is as follows:

If fR [ 0 _ ðfMC [ 0 ^ fR [ 0Þ
n ¼ n1 (or n ¼ nþ=hÞ

Elseif fMC [ 0 ^ fR � 0

n ¼ � sinw cosw½ �T

ð15Þ

Thereby, the crack normal is orthogonal to the first

principal direction, n1, or reoriented according to Eq. (8), if

Rankine criterion is violated. If only MC criterion is vio-

lated, the orientation of the crack plane is based on MC

analysis, as w ¼ p=4þ /=2. Finally, it should be empha-

sized that all embedded discontinuities can open in both

modes I and II irrespective of the mechanism, i.e. a vio-

lation of the Rankine or MC criterion, through which they

are introduced.

2.5 Solving the Equations Governing the Problem

The governing equations of motion are solved with the

explicit time integrator. Accordingly, the solution process

including the determination of the displacement jump is as

follows. First, the present displacement, ut, is utilized in

solving the local, element level problem for the present

value of displacement jump ad,t with the method presented

in Sect. 2.3. Then, the stress is calculated with Eq. (13)

after which the internal force vector is computed for each

element and assembled in the standard manner for the

whole system of equations. Finally, the response is com-

puted further in time with the selected integration scheme.

It is emphasized that with the present EAS-based approach,

no kinematical continuity between the discontinuity lines

of neighboring elements is imposed. This means that the

macro discontinuity line consisting of the displacement

discontinuities of single elements can be interpreted as a

dominant crack direction. The present method can repre-

sent a single crack line without locking, as shown in

numerical simulations by Brancherie and Ibrahimbegovic

(2009).

The explicit modified Euler method is chosen for time

integration. It is a second order method (in convergence)

having the same critical time step as the central difference

scheme (Hahn 1991). The system response is calculated as

€ut ¼ M�1 fextt � f intt

� �

_utþDt ¼ _ut þ Dt€ut
utþDt ¼ ut þ Dt _utþDt

ð16Þ

where Dt is the time step and ft
int, ft

ext are the internal and

external force vector, respectively.

2.6 Rock Heterogeneity and Initial Microcrack

Population Description

Rock heterogeneity is incorporated in the present approach

with the method by Mahabadi et al. (2010). In this method,

the mechanical properties and percentages of the constit-

uent minerals of a given rock are needed. The method to

describe the mineral texture is as follows. First, a finite

element mesh with an average element size (preferably

corresponding to the average rock grain size) is generated.

Now, assume that the given rock has 3 different minerals

with percentages 60 % (mineral 1), 30 % (mineral 2) and

Rate-Dependent Embedded Discontinuity Approach of Rock Fracture 1609
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10 % (mineral 3). Then, an array consisting of material

property set numbers 1, 2 and 3 with a length equal to the

number of elements in the mesh is generated. The amount

of these numbers in the array is the same as the percentage

of corresponding minerals in the rock. Finally, this array is

randomly shuffled and mapped into the mesh so that a

spatially random distribution of mineral property sets is

obtained.

As for the initial microcrack population description, it is

modeled as randomly oriented embedded discontinuities.

First, an array with length Nele (number of elements in the

mesh), having 1 as an entry if the element corresponding to

that entry contains an initial microcrack and 0 otherwise, is

generated. The amount of entries with ones (corresponding

to the number of microcracks) is a parameter. This array is

randomly shuffled in order to obtain spatially random

distribution of microcracks. Then, a randomly oriented (the

crack normal vector alignment being evenly distributed

between 0 and p) embedded discontinuity is assigned for

each element designated as containing a microcrack. The

strength parameters of these discontinuities are set close to

zero, i.e. they open in both modes without much resistance.

These techniques are illustrated in the numerical

simulations.

3 Numerical Simulation: Results and Discussions

Numerical simulations demonstrating the performance of

the present model are carried out in this section. Model

predictions are demonstrated at the structural level in

simulation of uniaxial compression and tension. The effects

of the model and parameters as well as mesh element size

are tested therein. Finally, the effects of strain rate and

confinement are tested. All simulations are carried out in

2D case under the plane strain assumption.

3.1 Effect of Initial Crack Population

and Heterogeneity in Uniaxial Compression

Uniaxial compression test is simulated in this section to

demonstrate the characteristics of the model response and

test the influence of different model components. The CST

mesh with the boundary conditions is depicted in Fig. 3a.

Confining pressure, rconf, is set to zero here. Standstead

granite is chosen as the rock material. Its constituent

minerals along with their properties and percentages in the

specific sample examined by Mahabadi (2012) are given in

Table 1.

Table 1 also gives the equivalent homogeneous values

based on the percentages of the mineral interfaces in the

sample (Mahabadi 2012). It should be mentioned that there

is a considerable discrepancy in the mechanical properties

of the three minerals given in the literature, see e.g. (Ma-

habadi 2012; Liu et al. 2004b; Li et al. 2003). Furthermore,

the cohesion values are modified by multiplying the ori-

ginal ones by factor of 2 to obtain more realistic (i.e. better

matching the experiments in Mahabadi (2012)) results with

the present model.

Elastic limits in tension and shear of the present model,

rt, rs, are identified with the tensile strength and the

modified cohesion values of the minerals given here. Thus,

the reason for the need to modify the original values of

cohesion in Table 1 is that the elastic shear limit of a

discontinuity line (microcrack) in the present model is a

material point level property while the values of cohesion

are based on the laboratory sample scale. Moreover, the

modified values are closer to the shear strength values

55.2 MPa and 55.1 MPa for Inada granite and Stone

Mountain granite, respectively, reported in (Goodman

1989). The uniaxial compressive strength in the MC cri-

terion (14) is related to the cohesion as rc = 2cosu/(1-
sinu)c0.

Fig. 3 CST-mesh (1738

elements) and boundary

conditions for the simulations

(dimensions of the specimen are

25 9 25 9 50 mm) (a), initial
microcrack population (10 % of

the elements contain a crack)

(b) and the numerical

representation of microstructure

(c)
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The initial microcrack population with random orienta-

tion of cracks and 10 % of elements having a crack is

shown in Fig. 3b. As the average element size is 1.56 mm

in the mesh, it is also the average length of the initial

microcracks. However, it should be kept in mind that the

length of the discontinuity line does not appear explicitly in

the present formulation. The strengths, (i.e. the elastic

limits) of the initial microcracks are set close to zero so that

they open without significant resistance. Figure 3c displays

the heterogeneity description generated with the method

described in Sect. 2.6.

All simulations are carried out using a constant velocity

boundary condition with v = 0.1 m/s and viscosity mod-

ulus value s = 0.001 MPas/m if not otherwise explicitly

stated. This viscosity value is low enough so that no strain

rate effects can be observed at the prescribed boundary

velocity. In the first simulation, the orientation of the

embedded discontinuity is perpendicular to the first prin-

cipal direction, i.e. n = n1. The results of the simulation

are presented in Fig. 4. The loading induced microcrack

distributions and the magnitude of displacement jumps are

plotted therein, and in all simulations results shown here-

after, at different stages of the loading process. These

stages are indicated by arrows attached to the axial stress–

strain curves. The stress–strain curves are plotted with the

usual convention in geomechanics, i.e. compressive quan-

tities are positive. The axial, lateral and volumetric strains

in Fig. 4 are average values approximated, respectively, by

eaxial ¼ ð�uy;tbottomedge
|fflfflfflfflffl{zfflfflfflfflffl}

¼0

��uy;ttopedgeÞ=h

elateral ¼ ð�ux;tleftedge � �ux;trightedgeÞ=b
evol ¼ eaxial þ 2elateral ð17Þ

where h and b are the height and width of the numerical

specimen, respectively, while �ux;tleftedge and �ux;trightedge are the

average nodal displacements in the x-direction of the left

and right edges of the sample at time t, and �uy;tbottomedge,

�uy;ttopedge are corresponding displacements in y-direction of

the bottom and top edges.

It can be observed from the results in Fig. 4a that Mode

I (Rankine) fracture events start quite early during the

loading process. All these events occur at the elements

adjacent to elements with initial microcracks. Moreover, at

the end of the loading process most of the elements in the

mesh have a crack, either initial, Rankine or MC type.

Some of these cracks open significantly more than others

so as to form localization patterns (Fig. 4e–g) that can be

interpreted as macrocracks. These cracks clearly form

typical axial (vertical) or slightly-aligned cracks. The cor-

responding stress–strain curves in Fig. 4h have similar

characteristics as observed in the experiments for many

rocks (Jaeger and Cook 1971). In particular, the post-peak

part of the axial stress–strain curve becomes steeper as the

strain increases. This behavior indicates a loss of stability

of the sample. Thus, this behavior could be interpreted as

the brittle intragranular fracture of single grains discussed

by Pininska (2008) (see also Introduction). The volumetric

strain is first compacting in nature and then, as more cracks

initialize and open, becomes dilatant.

As for the microcracks introduced by a violation of the

MC criterion (the inclination of these cracks is 70� refer-

encing to x-axis), they are very few. The reason for this is

that the uniaxial compressive strength of all the minerals is

so high (&274 MPa) that the numerical sample fails, due

to the weakening effect of initial microcracks, before the

element stresses reach (the peak stress is circa 82 MPa) the

UCS of the minerals. The influence of the cohesion will be

tested later in Sect. 3.2.3. If the initial microcrack popu-

lation is neglected, the results shown in Fig. 5 are obtained

(keeping the mineral description unaltered).

The amount of microcracks introduced by violation of

the MC criterion is considerably larger in the simulation

without the initial microcrack population, as can be

observed in Fig. 5c. These cracks localize forming mac-

roscopic shear bands, as attested in Fig. 5d. However,

most of the cracks here are of Rankine type. These cracks

initialize due to the heterogeneity of the material and form

long axial cracks reaching the bottom edge of the sample

(Fig. 5e) at the end of the failure process. The resulting

final failure mode is quite different from that produced

with the presence of initial microcrack population. Fur-

thermore, the peak stress, 160 MPa, is twice as high as it

was in the simulation with the initial microcracks and the

pre-peak parts of the stress–strain curves are more linear

here.

Table 1 Material properties for the minerals of Standstead granite

and equivalent homogeneous values [after (Mahabadi 2012)]

Parameter Quartz Feldspar Biotite Homogeneous

q (Density) (kg/m3) 2,600 2,600 2,800 2,616

E (Elastic modulus)

(GPa)

80 70 20 67.3

m (Poisson’s ratio) 0.17 0.29 0.20 0.27

rt (Tensile strength)

(MPa)

10 10 7 8.9

c0 (Cohesion) (MPa) 50* 50* 50* 45.8*

u (Internal friction

angle)

50� 50� 50� 47.4�

GIc (Mode I fracture

energy) (J/m2)

40 40 28 35.5

Percentage in the

sample

13 % 79 % 8 % 100 %

* The original values are 25 MPa for minerals and 22.9 MPa for the

homogeneous case
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As a final simulation of this section, the heterogeneity

description is neglected and the simulation is repeated with

the homogeneous material properties given in Table 1. The

results are shown in Fig. 6.

The results from the simulation with homogeneous

material (see Fig. 6) differ from the heterogeneous coun-

terpart (see Fig. 4) in details only. Here the final failure

mode has, however, more damage in the right lower corner

of the specimen. Therefore, in the present numerical

approach the presence of the initial microcrack population

has a more substantial influence on the resulting failure

patterns and the stress–strain response than the heteroge-

neity description. The mineral values given in Table 1,

however, do not differ severely from each other which

partly explain this finding. Indeed, the cohesion and fric-

tion angle are equal for all the minerals and the tensile

strength of Biotite is 70 % of that for Quartz and Feldspar

(both 10 MPa). This may explain why the present hetero-

geneity description does not affect the compressive

strength of the numerical sample. These numerical mod-

eling related findings may have their representations in

reality. It is, nonetheless, beyond the scope of the present

study (concentrating on model development) to consider

these experimental issues in more detail.

3.2 Effect of Microcrack Orientation in Uniaxial

Compression

The alternative orientation scheme for the tensile micro-

crack according to Eq. (8) is tested in this section. The

simulation with the initial microcrack population and

microstructure shown in Fig. 3 are repeated here. The

results are shown in Fig. 7.

When the orientation of mode I microcracks is accord-

ing to Eq. (8), the macrocracks seem to be more aligned

than in the case when microcracks are orthogonal to the

first principal direction. First such macrocracks, shown in

Fig. 7d, are formed as a consequence of many mode I

microcracks linking together. The peak stress of the stress–

strain response is lower here than in the simulation with

orthogonal cracks. Moreover, the post-peak part of the

curve is less steep indicating a more stable failure process.

These differences are clearly related to the alignment of

mode I cracks which facilitate sliding, i.e. mode II opening,

of the cracks. This orientation scheme also adds an extra

source of randomness to the model when nonstructured

meshes are used.

The failure process with this orientation scheme repre-

sents thus, to some extent, the intergranular microcracking

Fig. 4 Simulation results (initial microcrack population, heterogeneous material): Initial (red bars) and loading-induced microcrack (blue and

green bars) distributions (a)–(d) and magnitude of displacement jumps (e)–(g), and corresponding stress–strain curves (h)
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Fig. 5 Simulation results (no

initial microcrack population,

heterogeneous material):

Loading-induced microcrack

distributions (a)–(c) and
magnitude of displacement

jumps (d), (e) at different stages
of the loading process, and

corresponding stress–strain

curves (f)

Fig. 6 Simulation results

(initial microcrack population,

homogeneous material): Initial

and loading-induced microcrack

distributions (a)–(c) and
magnitude of displacement

jumps (d), (e) at different stages
of the loading process, and

corresponding stress–strain

curves (f)
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Fig. 7 Simulation results when

tensile microcrack is parallel to

one of the sides of the triangle

(initial microcrack population,

heterogeneous material):

Microcrack distributions (a)–
(c) and magnitude of

displacement jumps (d), (e) at
different stages of the loading

process, and corresponding

stress–strain curves (f)

Fig. 8 Simulation results when

tensile microcrack is parallel to

one of the sides of the triangle

(no initial microcrack

population and heterogeneous

material): Microcrack

distributions (a)-(c) and
magnitude of displacement

jumps (d), (e) at different stages
of the loading process, and

corresponding stress–strain

curves (f)
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of carbonate and soft rocks, discussed by Pininska (2008)

(see also ‘‘Sect. 1’’), leading to a more shear dominated

fracture process.

Next, the simulation is carried out without the initial

microcrack population. The results are shown in Fig. 8.

Without the initial microcrack population, a thick shear

band formed by coalescing mode I microcracks spans the

sample from the left upper corner to the right lower corner.

Moreover, the peak stress is again considerably higher than

in the simulation with the initial microcrack population.

3.3 Influence of Shear Strength Parameter in Uniaxial

Compression

The present discontinuity model decomposes the dis-

placement jump into separate components corresponding to

mode I (opening) and mode II (sliding). Therefore, it is to

be expected that the mode II elastic limit, i.e. the shear

strength parameter, has a substantial influence on the model

behavior in compression. For this reason, the simulation

with the initial microcrack population and heterogeneous

material is first repeated here with the original cohesion

values given in (Mahabadi 2012), i.e. the shear elastic limit

is set as rs = 25 MPa. Results are shown in Fig. 9.

The failure response with the lowered shear strength of

25 MPa is quite different indeed from that predicted with

the modified value of 50 MPa, as observed on comparing

Figs. 4 and 9. The peak stress is here considerably lower

(circa 55 MPa) and the post-peak part of the axial stress–

strain curve has the opposite features to the curve in Fig. 4.

One reason for the differences is the larger amount of

cracks introduced via violation of the MC criterion which

leads in a more stable failure process.

Next, a higher value of shear strength parameter is tes-

ted. Results from a simulation with rs = 100 MPa are

shown in Fig. 10.

When the shear strength is 100 MPa, there are very few

cracks introduced by the violation of the MC criterion and

the macrocracks are more axial than in the simulations with

lower shear strengths (see Fig. 10c). Moreover, the pre-

peak part of axial stress–strain curve exhibits a clear bent at

the stress level of 55 MPa. The reason for this is the for-

mation of a long axial crack spanning the whole specimen

shown in Fig. 10c. This long axial crack becoming more

and more apparent from Fig. 9 (rs = 25 MPa) and Fig. 4

(rs = 50 MPa) to Fig. 10 (rs = 100 MPa), is due to

increasing shear strength.

3.4 Influence of Randomness of Heterogeneity

and Initial Microcrack Population

All the previous simulations have been performed using the

same microstructure and initial microcrack population

shown in Fig. 3. In this section the effect of random gen-

eration both the microstructure and the initial microcrack

population is demonstrated. Three different simulations

with individual heterogeneity and initial microcrack

descriptions in each are carried out. The percentage of

Fig. 9 Simulation results with

rs = 25 MPa (initial

microcrack population,

heterogeneous material):

Microcrack distributions (a),
(b) and magnitude of

displacement jumps (c), (d) at
different stages of the loading

process, and corresponding

stress–strain curves (e)
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elements with an initial microcrack and the constituent

mineral percentages are kept unaltered.

The numerical specimens are shown in Fig. 11 and the

results from the simulations with these specimens are

plotted in Fig. 12.

The final failure modes shown in Fig. 12, while differ-

ing in details, have quite similar general characteristics but

the axial stress–strain curves deviate considerably. Partic-

ularly, Specimen3 has about 24 % higher strength

(105 MPa) than Specimen1 and Specimen2 which both

have the strength of circa 85 MPa. Moreover, while the

post-peak softening behavior of Specimen1 and Specimen3

is similar, Specimen2 displays a significantly more ductile

response. Thus, even this highly limited sample of three

specimens seems to demonstrate that the present approach

can replicate, at least to some extent, the vast deviations in

the compressive strength data for different rocks in the

literature.

3.5 Influence of Mesh Density in Uniaxial

Compression

The effect of the element size is tested in this section. For

this end, a CST mesh with an average side length of 1 mm

is generated resulting in 4276 triangles. In addition, the

percentage of elements containing an initial microcrack is

Fig. 10 Simulation results with

rs = 100 MPa (initial

microcrack population,

heterogeneous material):

Microcrack distributions

(a),(b) and magnitude of

displacement jumps (c), (d) at
different stages of the loading

process, and corresponding

stress–strain curves (e)

Fig. 11 Numerical specimens for demonstration of the influence of randomness of microstructure and initial microcrack population
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Fig. 12 Simulation results with the numerical specimens (initial

microcrack population, heterogeneous material): Microcrack distri-

butions and magnitude of displacement jumps at the end of failure

process for Specimen1 (a), Specimen2 (b), Specimen3 (c) and

corresponding stress–strain curves (d)

Fig. 13 Simulation results with

a denser mesh (initial

microcrack population,

heterogeneous material):

Mineral distribution (a), initial
microcrack distribution (b),
microcrack distribution at the

end of loading process

(c) magnitude of displacement

jumps at different stages of the

failure process (d), (e), and
corresponding stress–strain

curves (f)
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set to 1 %. The other data and parameters are as in the first

simulation. The results are shown in Fig. 13.

The general characteristics of results are the same as

with the coarser mesh. Some of the microcrack openings

localize so as to form axial macrocracks, as observed in

Fig. 13d. Here the peak strength, *150 MPa, is higher

than that with the coarser mesh due to fewer initial mi-

crocracks. This simulation shows that the present model

can be calibrated so as to match the experimental results of

real rocks (Standstead granite in this case with UCS of

147.3 MPa reported in Mahabadi (2012)). This calibration

does not necessarily require changing the mesh density but

the material and model parameters. However, the element

size should be small enough so that the heterogeneity and

microcrack distributions of the rock can be realistically

represented. Small element size unfortunately leads to

computationally more costly simulations.

3.6 Influence of Confining Pressure in Compression

The effect of confining pressure is tested in this section. A

coarser mesh with the average side length of 2 mm

(resulting in 1052 elements) is used for this end to save

computational time. Both mode I crack orientation options

are tested. Moreover, the same numerical specimen is used

at each levels of confinement despite the fact that this is

never the case in reality. Confining pressure is applied

gradually so that it increases with the same rate as the

compressive axial stress due the constant velocity bound-

ary condition (see Fig. 3). After reaching the prescribed

value, the confining pressure is kept fixed while the axial

compression still increases. The numerical specimen used

in all simulations in this section and the results for the

orientation scheme n = n1 are shown in Fig. 14.

Based on the results in Fig. 14, the effect of confining

pressure is that it suppresses the tensile (mode I) cracking

which in turn results in an increase of the shear (mode II)

microcracks as the ability of the specimen to bear load

increases under higher confinement. The resulting final

failure mode becomes more shear-dominated at higher

levels of confinement (see Fig. 14c). Furthermore, the

response becomes more ductile as the confining pressure

increases (see Fig. 14e).

Next, the optional mode I crack orientation scheme is

tested while the MC type of microcrack initiation is

neglected. Results are shown in Fig. 15.

In the simulations with the alternative mode I crack

orientation scheme and the absence of MC cracks, the axial

Fig. 14 Influence of confining pressure (n = n1, initial microcrack

population, heterogeneous material): Numerical specimen (a), final
microcrack distribution and magnitude of displacement jumps in

uniaxial (b), rconf = 10 MPa (c), rconf = 40 MPa (d) case, and

corresponding stress–strain curves (e)
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macrocracks generated in the unconfined case (Fig. 15a)

are suppressed and a major shear band spanning the

specimen diagonally is formed at level 10 MPa of con-

finement (see Fig. 15b). At the highest level of confine-

ment, 40 MPa, the failure mode is quite messy. In addition,

it can be observed that the response becomes increasingly

ductile as the confining pressure increases. The stress–

strain curve corresponding to 40 MPa of confining pressure

displays very little softening. Thereby, the confining pres-

sure-dependent brittle-to-ductile transition observed in the

experiments with compact carbonate rocks such as lime-

stone and marble (Wei and Anand 2008; Paterson 1958),

could be captured with the present model. It would be

beneficial in this regard to describe the bulk material with

Mohr–Coulomb or Drucker-Prager plasticity model so as to

incorporate the grain interior plasticity.

3.7 Influence of Loading Rate in Uniaxial Compression

As the present model incorporates the strain rate depen-

dency via viscosity, its influence on the specimen response

should be tested. Thereby, uniaxial compression described

in Fig. 3 using the material properties given in Table 1 is

simulated here. First, the effect of higher loading rate is

tested setting the boundary velocity to be v0 = -0.5 m/s

(viscosity is kept unaltered, i.e. s = 0.001 MPas/m). Then

higher value of viscosity modulus, s = 0.005 MPas/m is

tested with the original velocity v0 = -0.1 m/s. Results are

shown in Fig. 16.

The influence of higher loading rate is in accordance with

the experiments (Zhang and Zhao 2014), i.e. the peak-stress

increases (from 82 MPa in Fig. 4 to almost 115 MPa here)

and response becomes more ductile as more cracks are

initiated and, consequently, more energy is dissipated.

Almost identical effect is produced, with the present model,

by increasing the viscosity modulus while keeping the

loading rate fixed (compare Fig. 16d, e). Finally, it is noted

that the oscillation in the stress–strain curve with the higher

velocity (blue curve in Fig. 16f) is caused by the initial

velocity condition v(t = 0 s) = -0.5 m/s which generates a

stress wave that propagates back and forth between the

specimen top and bottom edges.

3.8 Response in Uniaxial Tension

Finally, the model prediction is demonstrated in uniaxial

tension, at the structural level, with the problem setup

illustrated in Fig. 3 with the exception that the boundary

Fig. 15 Influence of confining pressure (n = n?/h, initial microcrack

population, heterogeneous material, no MC cracks): Final crack

distribution and magnitude of displacement jumps in uniaxial (a),

rconf = 10 MPa (b), rconf = 40 MPa (c) case, and corresponding

stress–strain curves (d)
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Fig. 16 Influence of loading

rate and viscosity (initial

microcrack population,

heterogeneous material):

Microcrack distributions (a),
(b) and magnitude of

displacement jumps (c), (d) at
different stages of loading

process when v0 = -0.5 m/s,

s = 0.001 MPas/m, and the

magnitude of displacement

jumps at the end of loading

process (e) when v0 = -0.1 m/

s, s = 0.005 MPas/m, and

corresponding stress–strain

curves (f)

Fig. 17 Simulation results for

uniaxial tension test (initial

microcrack population,

heterogeneous material):

Microcrack distributions

(a),(b) and magnitude of

displacement jumps (c) at
different stages of loading

process when rs = 50 MPa,

and microcrack distribution and

magnitude of displacement

jumps at the end of loading

process (d), (e) when
rs = 5 MPa, and corresponding

stress–strain curves (f)
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velocity is set now to v0 = 0.01 m/s (other data is unal-

tered). Results from two simulations with rs = 50 MPa

and rs = 5 MPa are shown in Fig. 17. The latter 10 times

smaller value is chosen just for demonstrational purposes.

It can be observed that while there is no significant

deviation in the peak stresses, the post peak behavior and

the resulting failure mode differ substantially. Particularly,

the low shear strength of microcracks leads to a more

smooth softening response and single crack failure mode

while a double crack system is developed in the simulation

with higher shear strength. Finally, it is noted that the

uniaxial tensile strengths predicted in Fig. 17f are within

acceptable bounds from experimental value 6.15 MPa for

Standstead granite given by Mahabadi (2012).

4 Conclusions

Rate-dependent embedded discontinuity approach incor-

porating heterogeneity for numerical modeling of rock

fracture was developed and extensively tested in this paper.

According to the numerical simulations carried out here,

the present approach captures the salient features of rock

fracture in confined compression and uniaxial tension. The

employed embedded discontinuity approach is particularly

suitable for modeling initial microcrack population always

present in natural rocks. In addition, the strain rate

dependency incorporated via viscosity makes the present

model capable of modeling rock fracture in dynamic con-

ditions as well. Indeed, it was seen in the numerical sim-

ulations that the present model captures the strain rate

hardening and multiple fragmentation effects involved in

elevated loading rates. The model is, via the random

description of material heterogeneity, also able to predict

considerable variation in the uniaxial compressive

strengths of numerical specimens.

It was observed in the simulations that the orientation of

an introduced embedded discontinuity has a crucial effect

on the nature of failure process. Namely, when an

embedded microcrack (discontinuity) is parallel to the

loading axis in uniaxial compression, then, as mode II

opening of microcracks is severely restrained, the failure of

the specimen is of stability losing nature. This results in a

burst-like fragmentation of the sample as the rock columns

separated by long axial macrocracks fail. This numerical

failure could be interpreted as the intragranular parting

fracture of hard rocks. In case of allowing misalignment

between the plane of an embedded microcrack and the

loading axis, mode II opening (sliding) develops at the

embedded microcracks and, consequently, the failure pro-

cess is considerably more stable having a shear band

sliding nature. It is suggested here that this numerical

failure corresponds to the intergranular shear fracture

process exhibited by the majority of carbonate rocks. With

this latter microcrack orientation scheme, the confining

pressure-dependent brittle-to-ductile transition exhibited by

compact carbonate rocks can be captured with the present

approach, as was seen in the numerical simulations.

Thereby, comparing to the corresponding continuum vi-

scoplasticity models (Rankine and Mohr–Coulomb models)

the presented embedded discontinuity approach has the

advantage of accounting for the orientation of the micro-

cracks. Moreover, the present method is computationally

nearly as efficient as the continuum plasticity models.

Therefore, it can be considered superior to these models.

Finally, some future development topics are suggested.

First, the present approach should be extended to 3D set-

ting. Second, it would be beneficial for the reliability of the

approach to formulate the underlying embedded disconti-

nuity model in finite deformations framework. This is

especially true when modeling confined compression of

soft rocks since finite deformations occur in this applica-

tion. Finally, grain interior plasticity related to brittle-to-

ductile transition could be easily accounted for if the bulk

material is described as, e.g. Mohr–Coulomb or Drucker-

Prager plasticity model.
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